Graph learning models: theoretical understanding, limitations and enhancements
Yusu Wang (UC San Diego)
Abstract: Graph data is ubiquitous in many application domains. The rapid advancements in machine learning also lead to many new graph learning frameworks, such as message passing (graph) neural networks (MPNNs), graph transformers and higher order variants. In this talk, I will describe some of our recent journey in attempting to provide better (theoretical) understanding of these graph learning models (e.g, their representation power and limitations in capturing long range interactions in graphs), the pros and cons of different models, and ways to further enhance them in practice. This talk is based on multiple pieces of work with various collaborators, whom I will mention in the talk.
geometric topology
Audience: researchers in the topic
( video )
Series comments: Web-seminar series on Applications of Geometry and Topology
| Organizers: | Alicia Dickenstein, José-Carlos Gómez-Larrañaga, Kathryn Hess, Neza Mramor-Kosta, Renzo Ricca*, De Witt L. Sumners |
| *contact for this listing |
